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Abstract

A pathogen’s route to survival involves various mechanisms including its ability to invade (host’s susceptibility) and its reproductive

success within an invaded host (‘‘infectiousness’’). The immunological history of an individual often plays an important role in reducing

host susceptibility or it helps the host mount a faster immunological response de facto reducing infectiousness. The cross-immunity

generated by prior infections to influenza A strains from the same subtype provide a significant example. The results of this paper are

based on the analytical study of a two-strain epidemic model that incorporates host isolation (during primary infection) and cross-

immunity to study the role of invasion mediated cross-immunity in a population where a precursor related strain (within the same

subtype, i.e. H3N2, H1N1) has already become established. An uncertainty and sensitivity analysis is carried out on the ability of the

invading strain to survive for given cross-immunity levels. Our findings indicate that it is possible to support coexistence even in the case

when invading strains are ‘‘unfit’’, that is, when the basic reproduction number of the invading strain is less than one. However, such

scenarios are possible only in the presence of isolation. That is, appropriate increments in isolation rates and weak cross-immunity can

facilitate the survival of less fit strains. The development of ‘‘flu’’ vaccines that minimally enhance herd cross-immunity levels may, by

increasing genotype diversity, help facilitate the generation and survival of novel strains.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The cocirculation of several pathogens (‘‘strains’’) during
a particular flu season is a well known phenomenon that
has been documented for several decades (Fig. 2 in
Thacker, 1986). Pathogens’ coexistence as a function of
their ‘‘relatedness’’ or ‘‘affinity’’ continues to challenge the
scientific community (Earn et al., 2002; Ferguson et al.,
2003; Gog and Grenfell, 2002; Gomes and Medley, 1999;
Gupta et al., 1998; Plotkin et al., 2002; Smith et al., 2004).
Theoretical work grounded on explicit host–pathogen
systems has shown that pathogens’ diversity (coexistence)
can be facilitated by a history of prior strain-specific
e front matter r 2006 Elsevier Inc. All rights reserved.
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infections (Andreasen et al., 1997; Gupta et al., 1998), the
selection of antigenically distinct strains (Dietz, 1979; Earn
et al., 2002; Gupta et al., 1998; May and Anderson, 1983),
or by cross-immunity (Boni et al., 2004; Castillo-Chavez
et al., 1988, 1989; Nuño et al., 2005). So, ‘‘What
characterizes a successful invader’’? (May et al., 2001).
In this paper we carry out an uncertainty and sensitivity

analysis within the context of a two-strain influenza
host–parasite system that combines isolation and cross-
immunity to quantify the ability of a pathogen to invade
and coexist with a resident strain. Cross-immunity gives a
relative measure of reduced susceptibility in a host
following prior exposure to a related flu strain. We focus
on the role of cross-immunity (at low levels) as a
mechanism that can facilitate invasion and coexistence,
and in the process increase phenotypic diversity (Earn
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Fig. 1. Flow chart of the state progression of individuals in a population

exposed to two influenza strains. Fully susceptible individuals (S) can

become infected (primary infection) with Strain 1 (I1) or Strain 2 (I2).

Infected individuals with Strain 1 (Strain 2) may become isolated Q1 (Q2)

or recovered R1 (R2). Recovered individuals become infected (secondary

infection) with Strain 1 (V1) or Strain 2 (V2). Infected individuals recover

from both strains into class W.
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et al., 2002). The discussion is carried out within the
context of a population exposed to two competing strains
(interference competition characterized by cross-immunity
levels) of the same subtype of influenza type A. Disease
invasion in a ‘‘virgin’’ population facing two competing
strains is determined by the overall basic reproduction
number, R0, where R0 � maxfR1;R2g. The quantities R1

and R2 denote the basic reproduction numbers of Strains 1
and 2, respectively, in a non-competitive environment. This
dimensionless ratio gives the average number of secondary
infections generated by a ‘‘typical’’ infectious individual in
a population of susceptibles at a demographic steady state.
Here, it is assumed that R041. That is, invasion by either
one or both strains is possible. The cross-immunity
coefficient (0ps12p1) measures the average reduced
susceptibility to Strain 2 gained by a host after recovery
from Strain 1. The focus is on quantifying whether or not a
novel Strain 2 can successfully invade an established Strain
1 in the presence of cross-immunity (s12). The strain-
specific invasion reproduction number R1

2ðs12Þ is defined as
the average number of secondary infections generated by
Strain 2 in a population where Strain 1 is at an endemic
level. Hence, s12 equal to zero corresponds to total cross-
immunity (Strain-2 cannot invade) while s12 equal to one
corresponds to no cross-immunity.

Prior epidemiological studies that measure s12 have been
conducted (Couch and Kasel, 1983; Glezen and Couch,
1978; Taber et al., 1981). These studies are carried out by
evaluating the impact (percentage of the population
infected) on invading strains on populations with some
degree of immunological memory (cross-immunity). These
studies provide rough estimates of cross-immunity (s12)
values which have been incorporated in models for the
transmission dynamics of influenza (Castillo-Chavez et al.,
1988, 1989; Nuño et al., 2005). Typically, we would expect
a successful invasion by Strain 2 for cross-immunity values
(s12) that guarantee that R1

2ðs12Þ41 with R241. However,
Nuño et al. (2005) showed that successful invasion (and
coexistence) is also possible for some values of s12 when
R2o1. That is, cross-immunity may facilitate the survival
of less fit strains as long as the immune system has a limited
ability to recognize the invading strain (weak cross-
immunity). Here we compute the distribution of R1

2ðs12Þ
as a function of the variability of parameters, including s12.
We evaluate the possibility of a successful invasion
(including sub-threshold coexistence) in the presence of
uncertainty. The relation of these results to the possibility
of invasion by highly ‘‘fit’’ (highest rate of reproduction
within a host) strains as a function of low levels of herd
cross-immunity are discussed (Galvani, 2003; Gandon
et al., 2001; May and Anderson, 1983). These results may
add useful insights into the potential impact of vaccines as
promoters of invasions by novel strains since ‘‘flu vaccines’’
may possibly generate low levels of herd cross-immunity,
reduce transmission and susceptibility (Ambrosch and
Fedson, 1999; Boni et al., 2004; CDC, 2003; Gandon
et al., 2001; Smith et al., 1999).
In the next section, we describe the influenza model,
define the invasion reproduction number R1

2ðs12Þ, and
outline the approach used in our uncertainty analysis.

2. Methods

The two-strain influenza model (Fig. 1, Nuño et al.,
2005) incorporates host isolation during primary infection
and competition (interference) through cross-immunity.
The population is divided into 10 epidemiological classes.
For instance, susceptible individuals (S) may become
infected with Strain 1 (I1) at the rate b1 (primary infection);
following infection with Strain 1, individuals are isolated
(Q1) at the rate d1 or moved directly into the recovered
class (R1) at the rate g1; upon recovery from Strain 1,
individuals may become infected (secondary infection) with
Strain 2 (V 2) at a reduced rate s12b2; following a secondary
infection, Strain-2 infected individuals recover at the rate g2
(W); the per capita mortality rate is denoted by m.
Although influenza infection involves a short latent period
(1.9 days, CDC, 2006), for simplicity we do not include a
latency class in the model (Dushoff et al., 2004). The cross-
immunity parameter s12 is a rough measure of the relative
susceptibility to Strain 2 (secondary infection) generated by
the immune system of an individual previously infected
with Strain 1 (primary infection).
We assume that secondary infections result from minor

variants of the original invader (primary infection) and
therefore, result in clinically milder infections (i.e. isolation
does not take place during secondary infection). However,
this ‘‘somewhat’’ arbitrary assumption could be easily
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removed but the algebra becomes harder. We suspect that
the inclusion of additional isolation classes does not affect
the qualitative results of this paper but may have
potentially important quantitative differences. A detailed
description of the host–pathogen interactions in this two-
strain framework is provided in the Appendix (Fig. 1).

Pathogen’s invasion is governed by R0 � maxfR1;R2g.
The basic reproduction number of Strain 1 (R1) is given by
b1=ðmþ g1 þ d1Þ where b1 is the mean transmission rate of
Strain 1 and ðmþ g1 þ d1Þ

�1 is the mean infectious period
of an individual infected with Strain 1. Invasion is only
possible when R041. The invasion reproduction number
R1

2, measures the ability of Strain 2 to invade a Strain 1
endemic population. Values of R1

2 exceeding one (condi-
tional on the first strain becoming established, that is, on
R141) guarantee the invasion of Strain 1 by Strain 2 (as
well as their coexistence). For the epidemic model
described above, we will show that in a realistic parameter
space coexistence is possible under sub-threshold condi-
tions, that is, when R2o1 (Nuño et al., 2005). For the
remaining of the paper, we study the case in which Strain 1
is assumed to be at the endemic equilibrium (E1) while a
‘‘typical’’ Strain-2 infected individual is introduced. More-
over, considering that flu strain replacement occurs every
2–5 years (Plotkin et al., 2002) and the demographic time
scale of our model (see Appendix) is in the order of
decades, then our assumption of a constant total popula-
tion is valid. Hence, we assume that Nð0Þ ¼ L=m, that is ,
NðtÞ � L=m for all time t (Castillo-Chavez and Thieme,
1995).

Here, we find that Strain 2 invades (and coexists with
Strain 1 at equilibrium) if the number of secondary
infections produced by Strain 2 exceeds one, that is, if
R1

241. The invasion reproduction number of Strain 2
given that Strain 1 is established is denoted by

R1
2 ¼

b2
mþ g2 þ d2

~S1

~A
þ s12

b2
mþ g2

~R1

~A
, (1)

where

~S1

~A
¼

1

R1
;

~R1

~A
¼ ðg1ðmþ a1Þ þ a1d1Þf1,

f1 ¼
ð1� 1=R1Þ

ðmþ g1Þðmþ a1Þ þ a1d1
; ~A ¼

1

mð1þ md1f1Þ
. (2)

The proportion ~S1= ~A denotes the fully susceptible propor-
tion of the population, and ~R1= ~A denotes the partially
protected (‘‘cross-immune’’) susceptible population to a
Strain-2 infected individual. R1

2 is given by the additive
contribution of the ‘‘naive’’ and ‘‘cross-immune’’ repro-
duction numbers where Rnaive

2 � ½b2=ðmþ g2 þ d2Þ�½ ~S1= ~A�
gives the number of secondary cases that Strain 2 infected
individuals generate in the susceptible fraction ~S1= ~A
(primary infection) and Rcross�immune

2 � ½s12b2=ðmþ g2Þ�
½ ~R1= ~A� describes the number of secondary cases generated
by Strain-2 infected individuals among the partially
immune proportion, ~R1= ~A. A direct analysis of Eq. (1)
shows that the likelihood that Strain 2 invades a popula-
tion endemic with Strain 1 (R1

241) is reduced for
antigenically similar strains (s12 # 0) and enhanced for
strains that differ significantly (s12 " 1). A similar argu-
ment can be provided for the invasion of Strain 1 given that
Strain 2 has become established.
An uncertainty analysis on R1

2 quantifies its variability
generated from the uncertainty of the ‘‘input’’ parameters
(b1, b2, d1, d2, g1, g2, a1, m, s12) while a sensitivity analysis of
R1

2 evaluates the relative impact on R1
2 to changes in the

same parameters (Blower and Dowlatabadi, 1994; Chowell
et al., 2004). The invasion reproduction number R1

2 as
noted before, is a threshold that determines whether or not
Strain 2 is capable of invading Strain 1. We observe that R1

2

is a function of ~S1= ~A and ~R1= ~A. Hence, the critical
proportion of susceptibles needed to support an outbreak
by Strain 2 may only be attained through appropriately
balanced ‘‘efforts’’ by both strains (interference competi-
tion mediated by cross-immunity).
Since the analysis requires the explicit expressions for

R1
2, we replace

~S1

~A
¼

mþ g1 þ d1
b1

and
~R1

~A
¼ ðg1ðmþ a1Þ þ a1d1Þf1,

in our expression for R1
2. Therefore,

R1
2 ¼

b2
mþ g2 þ d2

� �
mþ g1 þ d1

b1

� �

þ s12
b2

mþ g2
ðg1ðmþ a1Þ þ a1d1Þf1, ð3Þ

f1 ¼
ð1� ðmþ g1 þ b1Þ=b1Þ
ðmþ g1Þðmþ a1Þ þ a1d1

,

where s12 denotes the cross-immunity conferred by Strain 1
to invasion by Strain 2. Expression (3) involves nine
parameters whose distributions are chosen using known
information on flu epidemiology and US demographics
(Table 1). Here, we assume a life expectancy of 70 years
(m � 4� 10�5 days�1). The rate at which each infective
gives rise to a new infection (bi) is sampled from an
exponential distribution to account for heterogeneity in
transmission rates. The mean values chosen for bi (0.7, 0.6,
i ¼ 1; 2) are chosen to support known reproduction
numbers of regular influenza epidemics in the mean range
1.2–1.5 (Chowell et al. (2006); Flahault et al., 1988; Longini
et al., 1982). The average duration of infectiousness for flu
may vary according to the population at risk (CDC, 2006).
For instance, healthy individuals are likely to clear the
infection faster than immuno-compromised ones. In order
to allow for variability in the recovery period and
considering that a range of values (lower, peak, upper)
are typically known, we sample recovery rates (gi, i ¼ 1; 2)
from asymmetric triangular distributions (Blower and
Dowlatabadi, 1994). The corresponding distributions with
peak of 7 days (3, 7, 10) for 1=g1 and 8 days (5, 7, 12) for
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Table 1

Parameter definitions and values used for the uncertainty and sensitivity analyses

Parameter Definition Range Baseline Reference

R1
2

Invasion reproduction number of strain 2 0–15 1.5a, 5b Nuño et al. (2005)

Ri Basic reproduction number of strain i 1.2–1.5 1.4c,1.5d Chowell et al. (2006), Flahault et al. (1988)

s12 Cross-immunity 0–1 0.3 Castillo-Chavez et al. (1988), Castillo-Chavez et al. (1989)

L, m Per capita birth and death rate 0–1 (days�1) 0.00004 Couch and Kasel (1983), CDC (2006)

bi Transmission rate 0.6–0.7 (days�1) 0.6c, 0.7d Couch et al. (1986), Elveback et al. (1976), Fox et al. (1982)

a1 Recovery rate for isolated individuals 4–6 (days�1) 6c (days) Couch and Kasel (1983), CDC (2006)

di Isolationrate 2–4 (days�1) 3c, 3.5d (days) Couch and Kasel (1983), CDC (2006)

gi Recovery rate 5–8 (days�1) 7c, 9d (days) Couch and Kasel (1983), CDC (2006)

aWith 50% probability.
bWith 10% probability.
cStrain 1 parameter.
dStrain 2 parameter.

Table 2

Statistics for R1
2, Rnaive

2 and Rcross�immune
2 for 10 Monte Carlo samples of

size of 105

Sample Mean Variance P½Rnaive
2 41�,

P½Rcross�immune
2 41]

1 1.42, 0.75, 0.69 2.21, 0.79, 0.81 0.25, 0.22

2 1.42, 0.78, 0.68 2.20, 0.96, 0.73 0.25, 0.22

3 1.45, 0.74, 0.68 2.29, 0.82, 0.77 0.24, 0.22

4 1.44, 0.75, 0.69 2.28, 0.78, 0.78 0.25, 0.23

5 1.44, 0.75, 0.68 2.17, 0.81, 0.74 0.25, 0.22

6 1.43, 0.77, 0.68 2.11, 0.91, 0.81 0.25, 0.22

7 1.42, 0.75, 0.68 2.15, 0.90, 0.77 0.24, 0.21

8 1.43, 0.77, 0.67 2.16, 0.87, 0.73 0.25, 0.22

9 1.44, 0.75, 0.68 2.29, 0.79, 0.72 0.24, 0.22

10 1.43, 0.73, 0.67 2.16, 0.78, 0.73 0.24, 0.21

Parameter distributions are illustrated in Figs. 2 and 3. The contribution

of Rnaive
2 and Rcross�immune

2 to coexistence (R1
241) are quantified for cross-

immunity with 0.3 mean. The rest of the parameter values are provided in

Table 1.

M. Nuño et al. / Theoretical Population Biology ] (]]]]) ]]]–]]]4
1=g2 are generated through Monte Carlo sampling (Blower
and Dowlatabadi, 1994; Chowell et al., 2004). We assume
that infected individuals isolate themselves from primary
infection at a uniformly distributed rate with mean 3
(interval: 1–5) and 3.5 (interval: 2–5) days following
infection from Strains 1 (1=d1) and 2 (1=d2), respectively
(Blower and Dowlatabadi, 1994; CDC, 2006). Similarly,
infectives who recover (1=a1) while in isolation do so at a
uniformly distributed rate with a mean of 6 days (interval:
2–10) (Blower and Dowlatabadi, 1994; CDC, 2006). The
cross-protection (s12) acquired from an infection with
Strain 1 against Strain 2 takes values on the interval ð0; 1Þ
(Castillo-Chavez et al., 1988, 1989). Values of s12 near zero
indicate strong levels of cross-immunity while values closer
to one suggest little-to-none protection against the invad-
ing strain. Since the dynamics considered here involve
strains within a particular subtype, we assume strong to
mildly weak levels of cross-immunity (Castillo-Chavez
et al., 1988, 1989). Moreover, we assume that minor
variants (antigenic drift) of the original strain continue to
provide high levels of protection. We assume a Gaussian
distribution for cross-immunity where 1=ŝ

ffiffiffiffiffiffi
2p
p

describes
the peak amplitude, m̂ (mean) and ŝ (standard deviation)
denote the centroid and width related to the peak
(respectively) in the exponent e�ððx�m̂Þ=ŝ

ffiffi
2
p
Þ
2

. The analytical
and numerical results in Nuño et al. (2005) showed that the
model dynamics were highly sensitive to cross-immunity
(s12). Therefore, we sample s12 from a Gaussian distribu-
tion with high concentration around the distribution mean
(small variance). The use of a Gaussian distribution for
cross-immunity was previously discussed by Gog and
Grenfell (2002).

2.1. Uncertainty analysis of R1
2

For the uncertainty analysis of R1
2 we generate 10 Monte

Carlo samples of 105 repetitions from the parameter
distributions described above. Since we want to evaluate
the possibility that Strain 2 invades the region where
Strain 1 is established, parameter sampling is restricted to
the case where R141. Using the input vectors generated
from these distributions, we assess the variability (mean
and variance) of R1

2 due to the uncertainty of the input
parameters. We estimate the probability of coexistence
(that is, P½R1

241]) for the 10 samples and study the
variability in R1

2 resulting from the contributions of Rnaive
2

and Rcross�immune
2 . We calculate and illustrate the contribu-

tion of each of these quantities in support of strain
coexistence (Table 2, Fig. 2).

2.2. Sensitivity analysis of R1
2

We investigate the sensitivity of R1
2 due to the

uncertainty of the input parameters by assessing the partial
rank correlation coefficients (PRCCs) between R1

2 and each
of the parameters. The PRCCs describe the correlation
between two variables (e.g. R1

2 and any parameter) while
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Fig. 2. Frequency distributions for contributions of R1
2, Rnaive

2 and Rcross�immune
2 sampling s12 from a normal distribution with mean 0.3 (a),(c),(e) and 0.8

(b),(d),(f). The dash lines in each subplot are used to illustrate the frequency of R1
2, Rnaive

2 and Rcross�immune
2 on either side of 1.
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controlling for the remaining parameters in the model
(Conover, 1980). A value of PRCC close to zero suggests
weak correlation between two variables, whereas, strong
correlations are given by absolute values close to 1. This
analysis helped identified the parameters that are most
effective in reducing the magnitude of R1

2.
3. Results

3.1. Uncertainty results for R1
2

Table 2 shows strong similarities between the mean
values for the 10 estimates of the mean, variance, and
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corresponding R1
2, Rnaive

2 and Rcross�immune
2 distributions

using a distribution for s12 with mean 0.3 and variance
0.05. It also shows that the average mean values for the
contributions (Rnaive

2 and Rcross�immune
2 ) are higher for Rnaive

2

(0.75) than Rcross�immune
2 (0.68) (see Fig. 2(c)–(f)). Further-

more, Table 2 shows that for the R1
2 distribution exceeding

one, Rcross�immune
2 (25%) contributes (slightly) more than

Rnaive
2 (22%).
We investigate the empirical distributions of R1

2 and the
probabilities that Strain 2 may invade a population
previously exposed to Strain 1 for scenarios that may
include high-transmission seasons (high reproduction
number). Table 3 provides the probabilities of reproduc-
tion numbers comparable to those of flu epidemics. Even
though this study focuses on strain competitive dynamics
as mediated through cross-immunity, we consider the
hypothetical scenario of antigenically distinct strains. We
consider the possibility that strains are considerably
different as may be expected during high-transmission
seasons (i.e. no significant cross-immunity available,
s � 1). We show that the possibility of high-transmission
seasons may occur 14% (2oR1

2o3, Mills et al., 2004) of
the time for weakly coupled strains (s ¼ 0:8). Our findings
suggest that an invading strain is almost equally likely
(approximately 14%, Table 3) to become established for
reproduction numbers that differ significantly (2oR1

2o3
and R1

245).
We illustrate the frequency distribution for R1

2 as well as
for the contribution of Rnaive

2 and Rcross�immune
2 to assess the

likelihood of coexistence for two cross-immunity distribu-
tions with different means (s12 ¼ 0:3 and 0.8). In order to
distinguish these distributions in the regime that supports
coexistence (R1

241), we plot R1
2 at the threshold value 1

(dashed-line). Fig. 2 shows that a frequency of R1
2 higher

than one is increased significantly when cross-immunity
between the established and newly invading strain is
reduced (from 0.3 to 0.8). We compare the densities in
Fig. 2 for two s12-distributions and find that R1

2 exceeds
one 49% of the time (Fig. 2(c), s12 ¼ 0:3) while 65% of the
values of R1

2 exceed one under weaker cross-immunity
Table 3

Mean values of the 10 estimates for the mean, variance and corresponding pr

Mean Variance P½R1
2o1� P½1oR1

2o2�

1 2.58 7.84 0.34 0.22

2 2.55 7.65 0.34 0.22

3 2.56 7.74 0.34 0.22

4 2.58 7.97 0.34 0.22

5 2.59 7.56 0.34 0.22

6 2.59 7.79 0.34 0.21

7 2.57 7.60 0.34 0.21

8 2.59 7.70 0.34 0.21

9 2.57 7.66 0.34 0.22

10 2.55 7.53 0.34 0.22

The rest of the parameter values are provided in Table 1.
(Fig. 2(d), s12 ¼ 0:8). We also compare the frequency
distributions of Rnaive

2 and Rcross�immune
2 and show that their

contribution to coexistence is comparable (25%) for s12 ¼
0:3 (Fig. 2(c), (e)). However, the contribution of
Rcross�immune

2 to coexistence increases from 22% (s12 ¼ 0:3,
Fig. 2(e)) to 50% (s12 ¼ 0:8, Fig. 2(f)) as cross-immunity is
reduced (s12 " 1).
A further assessment of R1

2 is illustrated in Fig. 3.
Cumulative distributions for the frequency of R1

2 show that
a 50th-percentile of R1

2 (intermediate s12) is below 1 (top
panel, Fig. 3). However, increasing the mean of s12 to 0.8
gives a 50th-percentile above 1 (bottom panel, Fig. 3). That
is, reducing cross-immunity (s12 " 1) enhances coexistence.
We calculate the probability of multiple and sub-threshold
coexistence for two cross-immunity mean levels. Fig. 4
illustrates an example in which cross-immunity supports
coexistence ðR1

241;R241Þ 48% of the time with sub-
threshold ðR1

241;R2o1Þ occurring 2% of the time. As we
reduce cross-immunity (s12 ¼ 0:8), the likelihood of coex-
istence, that is P½R1

241;R241� increases to 49% with a
significant increment in the likelihood of sub-threshold
coexistence P½R1

241;R2o1� ranging from 2% to 17% (see
Figs. 4 and 5). The results of Figs. 4 and 5 are summarized
in Fig. 6 where it can be clearly observed that decreasing
cross-immunity increases the likelihood of both coexistence
and subcoexistence significantly. In particular, the in-
creased likelihood of sub-threshold coexistence for waning
cross-immunity levels is evident.
Quantitatively speaking, coexistence occurs for low

levels of cross-immunity. That is, there exists a s� such
that for s4s� coexistence is the outcome while if sos�

then the outcome is competitive exclusion. Specifically, we
know (Nuño et al., 2005)

s� ¼
1

ð1þ d2=ðmþ g2ÞÞð1� mðmþ a1Þ=ððmþ g1Þðmþ a1Þ þ a1d1ÞÞ
.

(4)

If d2 ¼ 0, then we have s�41, a value out of the acceptable
range (no coexistence). In order to have s�o1, the
obability for R1
2, given that R141 for cross-immunity with mean 0.8

P½2oR1
2o3� P½3oR1

2o4� P½4oR1
2o5� P½R1

245�

0.14 0.10 0.06 0.14

0.14 0.10 0.06 0.14

0.14 0.09 0.06 0.14

0.14 0.09 0.06 0.14

0.14 0.09 0.06 0.15

0.15 0.10 0.06 0.14

0.14 0.09 0.06 0.14

0.14 0.09 0.06 0.15

0.14 0.10 0.06 0.14

0.14 0.10 0.06 0.14
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following inequality must be satisfied:

d24
mðmþ a1Þðmþ g2Þ
g1ðmþ a1Þ þ a1d1

, (5)

or equivalently, for a given level of cross-immunity s, there
is a threshold isolation rate

d�2 ¼
mþ g2

s
ðmþ g1Þðmþ a1Þ þ a1d1

g1ðmþ a1Þ þ a1d1
� s

� �
. (6)
That is, if d24d�2 then coexistence is the outcome. If we
substitute the mean values of the distributions used in our
uncertainty and sensitivity analysis in inequality (5),
including the value of 1=d1 ¼ 3 then we see that d2 exceeds
d�2. Consequently, coexistence under reasonable rates of
isolation (d240:2511) is possible.

3.2. Sensitivity results for R1
2

The sensitivity of R1
2 due to the uncertainty of the input

parameters is addressed through the use of the PRCCs of
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R1
2 with each of the input parameters of the model. These

coefficients measure the independent effect of each input
variable on R1

2 (assuming no correlation between the
parameter values). We summarize the PRCCs between R1

2,
Rnaive

2 and Rcross�immune
2 and each input parameter. Para-

meters are listed in decreasing order of their PRCCs for R1
2,

Rnaive
2 and Rcross�immune

2 . R1
2: b2ð0:97Þ; g2ð0:64Þ; d1ð�0:39Þ;

s12ð0:38Þ; d2ð0:18Þ; g1ð�0:07Þ;b1ð�0:04Þ; a1ð0:005Þ; Rnaive
2 :

b2ð0:89Þ; d2ð�0:37Þ; g1ð�0:32Þ; b1ð�0:30Þ; g2ð�0:16Þ; d1ð�0:05Þ;
Rcross�immune

2 : b2ð0:86Þ; g2ð�0:36Þ; g1ð0:31Þ;s12ð0:28Þ; b1ð0:26Þ;
d1ð0:06Þ; a1ð�0:01Þ; d2ð�0:003Þ. These results show that b2
and g2 are the most influential (jPRCCj40.5) and
significant (po0.05) parameters in R1

2. Increments in b2
extend the magnitude of R1

2 while increments in g2 reduce
R1

2. We address the sensitivity of Rnaive
2 and Rcross�immune

2 to
each parameter through the PRCCs. These results indicate
that b2 is the most influential parameter in Rnaive

2 . Finally,
an assessment of the PRCCs corresponding to Rcross�immune

2

suggests that b2 is the only influential parameter positively
correlated with the invasion reproduction number of the
partially immune population. A summary of the sensitivity
results for R1

2, Rnaive
2 and Rcross�immune

2 indicates that b2 is
always the most influential parameter.

4. Discussion

Using a two-strain influenza model that incorporates
partial cross-immunity and host isolation during primary
infection, we studied the possibility that an emergent
pathogen (strain) invades a population already infected by
a ‘‘similar’’ intruder. The possibility of invasion is
determined by the distribution of R1

2 values generated
from the distribution of model parameters.
Our uncertainty study shows that immunological inter-

ference between distinct (low cross-immunity) competing
strains may enhance the possibility that an invading strain
becomes established. As cross-immunity is reduced
(s12 " 1), coexistence turns out to be the most likely
outcome. Moreover, whenever coexistence is possible, the
possibility that it occurs in sub-threshold is significantly
enhanced by decreasing cross-immunity (from 2% to 17%
in the case presented here). In other words, decreasing
cross-immunity increases the survival of less fit strains.
However, cross-immunity is not solely responsible for these
outcomes. Our results shows that appropriate isolation
rates are required to support coexistence for cross-
immunity regimes that are reasonable for flu (Eq. (6)).
We showed that a pathogen can invade a resident

pathogen as long as it generates more than one infection
(on the average) in a population characterized by two
immunological distinct subpopulation proportions ~S1= ~A
(naive) and ~R1= ~A (partially immune). Cross-immunity
plays a significant role in determining which population
is most likely to contribute to the success of an invading
pathogen. Rnaive

2 contributes most to a successful invasion
when both strains are weakly coupled (s12 " 1). The
situation changes as cross-immunity increases (s12 # 0).
The sensitivity analysis of R1

2 suggests that an outbreak
may be prevented most efficiently by reducing transmission
(b2). Reducing the length of recovery period (g2) also helps.
Our results support and extend the findings of research-

ers who have used multi-strain models where competition is
mediated by cross-immunity (Abu-Raddad and Ferguson,
2005; Bremermann and Thieme, 1989; Castillo-Chavez et
al., 1988, 1989; Dietz, 1979; May et al., 2001). The
possibility that a novel strain invades a population where
a ‘‘similar’’ strain has become established may depend on
the size of the ‘‘effective’’ susceptible population and other
host–pathogen interactions (Boni et al., 2004; Ferguson et
al., 1999; Galvani, 2003; Gandon et al., 2001; May et al.,
2001; Porco and Blower, 2000). Here, the effective size of
such population is enhanced by cross-immunity but only
when cross-immunity is low, that is, when the strains are
dissimilar (Castillo-Chavez et al., 1988, 1989; Dietz, 1979).
If strains are antigenically similar, competition for suscep-
tibles is likely to drive the weaker strain to extinction
(Bremermann and Thieme, 1989; Galvani, 2003). Results
on the possibility of sub-threshold coexistence in multiple
pathogen (strains) models are fairly recent and their
understanding requires further investigation (Martcheva
and Thieme, 2003; Martcheva and Pilyugin, 2006; May et
al., 2001). Theoretical models that allow for the possibility
of super-infection (as observed in schistosomiasis) and
coinfection have shown to support coexistence in sub-
threshold as the work discussed here.
The work in this manuscript can be interpreted in terms

of ‘‘flu’’ vaccines which tend to be developed on the basis of
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cross-reactivity tests (in animal models) of likely incoming
strains (Ambrosch and Fedson, 1999; Gandon et al., 2001;
Smith et al., 1999). Moderate increases in cross-immunity
(s12 # z, z 2 ð0; 1Þ) due to repeated vaccination or ‘‘flu’’
exposure may be unable to prevent the invasion of less fit
strains (Lambert et al., 2005). Could vaccination policies
facilitate a flu pandemic (Ferguson et al., 2005; Longini et al.,
2005)?

The findings here have been discussed in terms of
pathogens (flu strains) that cocirculate during influenza
seasons, however, ‘‘competition exclusion’’ and coexistence
dynamics have been observed among other pathogens
(Altizer et al., 2003; Cleaveland et al., 2001; May and
Anderson, 1983; Rabsch et al., 2000). More recently,
Gomes et al. (2004) studied the impact of temporary and
partial immunity in epidemic models (S-I-S and S-I-R) and
analyzed the outcome of vaccination. Although these
models allow for single-pathogen interactions, their find-
ings emphasize the challenges of recurrent pathogens
through the association of disease prevalence and vaccine
failure (Gomes et al., 2004).

Host–pathogen interactions and the role of partially
protecting vaccines have been discussed by Gandon et al.
(2001). Using a classical S-I-S model that allowed for
partial and full susceptibility, they showed that imperfect
vaccines that reduce transmission or susceptibility selected
for lower virulence (‘‘induced host mortality’’), while those
reducing replication and/or toxicity selected for greater
virulence. In the ‘‘low-virulence’’ outcome, persistence
(from a pathogen’s perspective) was a priority and a
tradeoff between persistence (host survival) and ‘‘optimal’’
transmission became key in determining a pathogen’s
survival. Another example that illustrates the impact of
vaccine in cocirculating pathogens is given by a recent
study in Boni et al. (2004). They showed that vaccines
aimed to decrease transmission rates also reduced the
production of new flu strain variants, thereby, influencing
the drift evolution and severity of flu in the population.
Furthermore, invading pathogens with high-mutation
potential were likely to become established in the popula-
tion, while, low-mutation pathogens became excluded.

In summary, the theoretical work here shows that
decreasing the levels of cross-immunity may allow for the
survival of novel but less fit (not good invaders) strains.
Whether or not these ‘‘unfit’’ strains are more lethal (at the
individual level) and consequently, more likely to generate
outbreaks with unusually high death rates is a question of
further research.
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Appendix

The description of the model equations can be derived
from Fig. 1. The host isolation plays a significant role in
the dynamics of disease transmission since a proportion of
infected individuals are removed from the population
through self-isolation. This assumption replaces the stan-
dard disease incidence term biSðI i þ ViÞ=N by the quar-
antine-adjusted incidence biSðI i þ V iÞ=ðN �QÞ where N is
the total population size. This enhances the force of
infection since the probability that a given contact
(‘‘effective contact’’) leads to transmission of a primary
infection increases from ðI i þ ViÞ=N to ðI i þ ViÞ=ðN �QÞ.
The model becomes:

dS

dt
¼ L�

X2
i¼1

biS
ðI i þ ViÞ

A
� mS,

dI i

dt
¼ biS

ðI i þ ViÞ

A
� ðmþ gi þ diÞI i,

dQi

dt
¼ diI i � ðmþ aiÞQi,

dRi

dt
¼ giI i þ aiQi � bjsijRi

ðI j þ VjÞ

A
� mRi; jai,

dVi

dt
¼ bisjiRj

ðI i þ ViÞ

A
� ðmþ giÞV i; jai,

dW

dt
¼
X2
i¼1

giV i � mW ,

A ¼ S þW þ
X2
i¼1

ðI i þ V i þ RiÞ, (7)

where A denotes the population of non-isolated hosts.
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